686. Molecular Polarisability. The $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}, \mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{Cl}, \mathrm{C}-\mathrm{Br}$, and C-I Link Polarisabilities, and the Conformations of cycloPentane, of cycloHexyl Chloride, Bromide, and Iodide, and of cycloPentanone, cycloHexanone, cycloHexane-1:4-dione, Camphor, Paraldehyde, and Tetrahydrofuran.

By (Mrs.) C. G. Le Fèvre and R. J. W. Le Fèvre.

Abstract

A study of the electric double refraction of solutions of cyclopentane and cyclohexane, of various of their ketonic and halogeno-derivatives, and of paraldehyde, tetrahydrofuran, and (\pm)-camphor leads to the following conclusions: (a) the longitudinal and transverse polarisabilities of the $\mathrm{C}-\mathrm{C}$ link are respectively $0.097_{9} \times 10^{-23}$ and $0.027_{2} \times 10^{-23}$ in cyclopentane and $0.098_{6} \times 10^{-23}$ and $0.027_{4} \times 10^{-23}$ in cyclohexane; corresponding values for other bonds are $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{Cl}} 0.382, b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{Cl}} 0.185, b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{Br}} 0.530, b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{Br}} 0.270, b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{T}}$ $0.807, b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{I}} 0.418, b_{\mathrm{L}}{ }^{0-0} 0.236, b_{\mathrm{T}}{ }^{\mathrm{CoO}} 0.139, b_{\mathrm{V}}{ }^{\mathrm{Co}} 0.025, b_{\mathrm{L}}{ }^{\mathrm{O}-0} 0.081$, and $b_{\mathrm{T}}{ }^{\mathrm{C}-0} 0.039$ (all $\times 10^{-23}$ c.c.).

These data are applied in conformational analysis. cycloPentane appears non-planar with two carbon atoms differently out of the plane of the remaining three. The same skeleton is satisfactory for cyclopentanone, the cyclopentyl halides, and tetrahydrofuran. Preliminary calculations show it to be applicable to camphor. cycloHexanone has a chair structure. The halogen atoms in cyclohexyl chloride, bromide, and iodide are predominantly equatorial. Solutions of cyclohexane-1: 4-dione may contain 20% of a boat form in which the CO groups are part of the basal plane of four carbon atoms. Infrared spectra confirm the absence of enolisation in the diketone.

New determinations of the polarisations at infinite dilution in carbon tetrachloride of twelve substances are listed; apparent moments, on the assumption ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$, are also given, and compared with results in the literature.

The work recorded in this paper originated as an attempt to ascertain by experiment the polarisability ellipsoid of the $\mathrm{C}-\mathrm{C}$ link. For reasons already set out ${ }^{1-6}$ the longitudinal and the transverse polarisability ($b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}}$ and $b_{\mathrm{T}}{ }^{\mathrm{C}-0}$ respectively) of this bond cannot be reliably derived from measurements on the simpler non-polar paraffins, and the suitability of cyclohexane as an alternative seemed therefore worth exploration. The project in its development involved the determination of the molar Kerr constants at infinite dilution, ${ }_{\infty}\left({ }_{m} K_{2}\right)$, of some fourteen substances, mainly halogeno- and keto-derivatives of cyclopentane and cyclohexane, and provided evidence on the conformations of several of these.

For brevity, neither definitions of symbols to be used nor expansions of quantities such as $\theta_{1}, \theta_{2}, \theta_{3}$, etc., will be repeated here-they are given in full in a recent review, ${ }^{2}$ and with less detail in refs. 1 and 3-9. Computations of molecular-polarisability ellipsoids from bond ellipsoids have also been illustrated frequently by us ${ }^{1-9}$ and therefore need not be explained again.

The C-C Link in cycloHexane.-The observed $\infty_{m}\left(K_{2}\right)$ for this hydrocarbon in carbon tetrachloride is $0.98_{7} \times 10^{-12}$-a value so small that we feel justified in assuming the

[^0]absence or insignificance of a distortion term (the θ_{3} of ref. 3) and in calculating the polarisability semiaxes of the molecule directly from the relations (1) and (2) :
\[

$$
\begin{align*}
\infty\left({ }_{m} K_{2}\right) & =2 \pi \mathbf{N} \theta_{1} / 9 \tag{1}\\
{ }_{\mathrm{F}} P & =4 \pi \boldsymbol{N}\left(b_{1}+b_{2}+b_{3}\right) / 9 \tag{2}
\end{align*}
$$
\]

For reasons summarised by Hazebroek and Oosterhoff ${ }^{10}$ cyclohexane may be taken as existing at ordinary temperatures very largely as chair molecules (I), in which six hydrogen atoms are disposed ${ }^{11}$ in an " equatorial " belt, and the six others alternately upwards and downwards so that their $\mathrm{C}-\mathrm{H}$ bond directions are parallel to the axis running perpendicularly through the planes of carbon atoms 1,3 , and 5 , or 2,4 , and 6 . The symmetry of model (I) permits the simplification in equations (1) and (2) that $b_{1}=$ $b_{2} ;{ }_{\mathrm{E}} P$ and ${ }_{\mathrm{D}} P$ are known respectively from the data of Vogel ${ }^{12}$ and Le
 Fèvre and Narayana Rao; ${ }^{13}$ semiaxes therefore follow as $b_{1}=b_{2}=$ $1 \cdot 11_{7} \times 10^{-23}$ and $b_{3}=0.97_{5} \times 10^{-23}$.

These molecular polarisabilities can be rewritten in terms of four link polarisabilities $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}}, b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}}, b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}$, and $b_{\mathrm{T}} \mathrm{C}-\mathrm{H}$, the last two of which are known. ${ }^{1}$ Appropriate expressions follow. In order to find out what effect (I) a small content of boat forms (II) would have upon the magnitudes of $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}}$ The calculated tensor components are :
(a) For the chair form of cyclohexane:

$$
\begin{aligned}
b_{1}=b_{2}= & 2 b_{\mathrm{L}} \mathrm{C}-\mathrm{C} \cos ^{2} 19^{\circ} 28^{\prime}\left(2 \cos ^{2} 60^{\circ}+1\right)+2 b_{\mathrm{T}} \mathrm{c}-\mathrm{C} \\
& +2 \sin ^{2} 1 \cos ^{2} 30^{\circ} \\
& \left.+2 b_{\mathrm{T}} 9^{\circ} 28^{\prime} \cdot \cos ^{2} 60^{\circ}+\sin ^{2} 19^{\circ} 28^{\prime}\right)+6 b_{\mathrm{T}}^{\mathrm{C}-\mathrm{H}}+2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \cos ^{2} 19^{\circ} 28^{\prime} 19^{\circ} 28^{\prime}+4 b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}} \cos ^{2} 19^{\circ} 28^{\prime} \\
& +4 b_{\mathrm{T}}^{\mathrm{C}-\mathrm{H}} \sin ^{2} 19^{\circ} 28^{\prime} \cdot \cos ^{2} 60^{\circ}+4 b_{\mathrm{T}}^{\mathrm{C}-\mathrm{H}} \cos ^{2} 30^{\circ} \\
b_{3}= & 6 b_{\mathrm{L}} \mathrm{C}-\mathrm{C} \sin ^{2} 19^{\circ} 28^{\prime}+6 b_{\mathrm{T}} \mathrm{c}-\mathrm{C} \cos ^{2} 19^{\circ} 28^{\prime}+6 b_{\mathrm{L}} \mathrm{C}-\mathrm{H} \\
& +6 b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}\left[\cos ^{2}\left(\pi-109^{\circ} 28^{\prime}\right)\right]+6 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{H}} \sin ^{2}\left(\pi-109^{\circ} 28^{\prime}\right)
\end{aligned}
$$

(b) For the boat form of cyclohexane:

(II)
(b_{1} acts along $F B, b_{2}$ along $F E$)

$$
\begin{aligned}
& b_{1}=2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}}+4 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} A^{\prime} F M+4 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} A^{\prime} F M+4 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} A^{\prime} F A \cdot \cos ^{2} A F M \\
& +4\left[b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \sin ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{H}} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right)\right]+8 b_{\mathrm{T}} \mathrm{C}-\mathrm{H} \\
& b_{2}=2 b_{\mathrm{L}}{ }^{\mathrm{c}-\mathrm{C}}+4 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{c}} \cos ^{2} A^{\prime} F A \cdot \cos ^{2}(\pi-A F E)+4 b_{\mathrm{T}}{ }^{\mathrm{c}-\mathrm{C}} \sin ^{2}(\pi-A F E) \\
& +4 b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{o}} \sin ^{2} A^{\prime} F A \cdot \cos ^{2}(\pi-A F E)+8\left(b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \cos ^{2} 109^{\circ} 28^{\prime}\right. \\
& \left.+b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{H}} \sin ^{2} 109^{\circ} 28^{\prime}\right)+2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}+2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \cos ^{2}\left(90^{\circ}-19^{\circ} 28^{\prime}\right) \\
& +2 b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{H}} \sin ^{2}\left(90^{\circ}-19^{\circ} 28^{\prime}\right) \\
& b_{3}=2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}}+4 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} A^{\prime} F A+4 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} A^{\prime} F A+4\left(b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \cos ^{2} 19^{\circ} 28^{\prime}\right. \\
& \left.+b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{H}} \sin ^{2} 19^{\circ} 28^{\prime}\right) \cos ^{2} 60^{\circ}+4 b_{\mathrm{T}}^{\mathrm{C}-\mathrm{H}} \sin ^{2} 60^{\circ}+4 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \cos ^{2} 19^{\circ} 28^{\prime} \\
& +4 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{H}} \sin ^{2} 19^{\circ} 28^{\prime}+2 b_{\mathrm{T}} \mathrm{C}-\mathrm{H}+2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \cos ^{2} 19^{\circ} 28^{\prime}+2 b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{H}} \sin ^{2} 19^{\circ} 28^{\prime}
\end{aligned}
$$

[^1]where A is the projection of A^{\prime} in the $B C E F$ plane and M the mid-point of $B F$, and $\cos A^{\prime} F A=7^{\frac{1}{2}} / 3, \cos A F E=-1 / 7^{\frac{1}{2}}$, and $\cos A F M=(6 / 7)^{\frac{1}{2}}$.

Accordingly, from (a) we obtain $b_{\mathrm{L}}{ }^{\prime} \mathrm{C}=0.098_{6} \times 10^{-23}$ and $b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}}=0.027_{4} \times 10^{-23}$, yielding a $b_{\mathrm{L}} / b_{\mathrm{T}}$ ratio of $3 \cdot 60$. Were cyclohexane to contain a low proportion of " boat " forms (Hazebrock and Oosterhoff's paper indicates a possibility of a few units percent.) these figures would scarcely be altered, since from (b), for 100% "boat " forms, $b_{L}{ }^{c-c}$ and $b_{\mathrm{T}}{ }^{\mathrm{c}-\mathrm{C}}$ emerge as $0 \cdot 10_{9}$ and $0.02_{2} \times 10^{-23}$ respectively.

The present result is thus close to that deduced by Bunn and Daubeny, ${ }^{14}$ viz., $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} / b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}}=3 \cdot 67$, from the refractive indices and density of crystalline hexatriacontane, and differs markedly from estimates, around 90 , drawn in the earlier literature from measurements on ethane (cf. refs. 1-5).

The Conformation of cycloPentane.-An examination of cyclopentane yielded ${ }_{\infty}\left({ }_{m} K_{2}\right)=$ 0.75×10^{-12}. By setting up the equations appropriate for a fat molecule, viz. :

$$
\begin{aligned}
b_{1}=b_{2} & =b_{\mathrm{L}}^{\mathrm{C}-\mathrm{C}}+2 b_{\mathrm{L}}^{\mathrm{C}-\mathrm{C}}\left(\cos ^{2} 72^{\circ}+\cos ^{2} 36^{\circ}\right)+2 b_{\mathrm{T}}{ }^{\mathrm{c}-\mathrm{C}}\left(\cos ^{2} 18^{\circ}+\cos ^{2} 54^{\circ}\right)+10 b_{\mathrm{L}} \mathrm{C}-\mathrm{H} \\
b_{3} & =5 b_{\mathrm{T}}^{\mathrm{C}-\mathrm{C}}+10 b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}
\end{aligned}
$$

(noting that $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{H}}$), we obtained a $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} / b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}}$ ratio of $2 \cdot 52$. So marked a change (from 3.60 to 2.52) in this ratio in passing from cyclohexane to cyclopentane seemed a priori unlikely. An obvious cause of the discrepancy lay in the configuration adopted : had it been taken as non-planar a larger $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{O}} / b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{C}}$ ratio would have resulted. Electrondiffraction studies of decafluorocyclopentane, ${ }^{15}$ and spectroscopic measurements ${ }^{16}$ and entropy considerations ${ }^{17-19}$ with cyclopentane itself, had in fact already raised the possibility that the 5 -carbon ring was not flat.

Previous workers ${ }^{15-19}$ do not uniformly propose a single structure. E.g., Bastiansen, Hassel, and Lund ${ }^{15}$ say that "we have not been able to demonstrate that the fivemembered ring must necessarily be non-planar, but it seems rather probable that a deviation from a planar carbon ring is present." They suggest a form in which $\mathrm{C}_{(1)}$ is below and $\mathrm{C}_{(3)}$ above a plane containing $\mathrm{C}_{(2)}$, $\mathrm{C}_{(4)}$, and $\mathrm{C}_{(5)}$. They remark that " A definitive solution of the problem cannot be given at present based on the electron diffraction method . . . other models may be just as probable." Tschamler and Voetter ${ }^{16}$ speak of a slight departure from planarity with cyclopentane but do not specify it. American authors ${ }^{17-19}$ favour a C_{S} configuration with one carbon out of the plane of the other four but do not exclude a form C_{2} similar to that discussed by Bastiansen et al.

The C_{S} model is attractive, since it is commonly assumed to occur in natural polycyclic systems (e.g., chloro-, bromo-, and cyano-camphor, ${ }^{20}$ in calciferol 4-iodo-5-nitrobenzoate, ${ }^{21}$ in ring D of cholesteryl iodide, ${ }^{22}$ etc.).

The situation has been assessed by Barker and Stephens ${ }^{23}$ thus : planar structures are stabilised by forces tending to retention of tetrahedral angles but repulsions between hydrogens of neighbouring methylene groups are at a maximum in flat models. Repulsions produce torsional forces around the $\mathrm{C}-\mathrm{C}$ bonds which (cf. Miller and Inskeep ${ }^{24}$) act to pucker the ring. Barker and Stephens consider this puckering to be small so that, with a few exceptions, (spectroscopic) selection rules for a planar ring can be followed. At the outset there was therefore no evidence enabling us to choose between the C_{S} and the C_{2} configuration for cyclopentane, although we slightly preferred the latter since it appeared to offer the better mutual accommodation for the hydrogen atoms.

[^2]A different approach was then made. The molar Kerr constants of cyclopentyl chloride, bromide, and iodide, of cyclopentanone, and of tetrahydrofuran were ascertained as follows :

		$10^{12}{ }_{\text {o }}(m$ K		$10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$
cycloPentyl chloride		59.3	cycloPentanone	
bromide		96.8 153	Tetrahydrofuran	-2

At first glance the most significant of these results is that of tetrahydrofuran which in no circumstances could be planar and have a negative Kerr constant. In fact, if we may anticipate knowledge of the polarisabilities of the $\mathrm{C}-\mathrm{O}$ link, a planar configuration should, by adopting the C-O-C angle reported by Allen and Sutton, ${ }^{25}$ have ${ }_{m} K$ nearly $+30 \times 10^{-12}$.

For the quantitative analysis of these data we have made three assumptions: that the $b_{\mathrm{L}}^{\mathrm{C}} \mathrm{C}_{\mathrm{C}} / b_{\mathrm{T}}^{\mathrm{C}-0}$ ratio should be the same in 5 - as in 6 -membered rings, that the cyclopentane skeleton persists unaltered in derivatives of this hydrocarbon, and that with polar solutes θ_{1} may be neglected, so that ${ }_{\infty}\left({ }_{m} K_{2}\right) \sim 2 \pi N \theta_{2} / 9$ (numerical data justifying the last approximation have been given earlier ${ }^{6,9}$). Then, when the molecular resultant moment μ lies along b_{1} we may write :

$$
\begin{equation*}
\theta_{2}=\mu^{2}\left(2 b_{1}-b_{2}-b_{3}\right) / 45 \boldsymbol{k}^{2} T^{2} \tag{3}
\end{equation*}
$$

whence the quantity $\left(2 b_{1}-b_{2}-b_{3}\right)$ is directly obtainable. Now if $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}$, and $b_{3}{ }^{\prime}$ are the polarisabilities of cyclopentane such that $b_{1}{ }^{\prime}$ is in the direction of $\mu_{\text {resultant }}$ in cyclopentanone, i.e., along $M A$ in (V), then, writing $b^{c p}$ to refer to cyclopentanone, we have :

$$
\begin{aligned}
& b_{1}{ }^{\text {cp }}=b_{1}{ }^{\prime}+b_{\mathrm{L}} \mathrm{c}-\mathrm{O}-2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \\
& b_{2}{ }^{\text {cp }}=b_{2}{ }^{\prime}+b_{\mathrm{T}} \mathrm{C}=0 \\
& b_{\mathrm{L}}{ }^{\mathrm{c}-\mathrm{H}} \\
& b_{3}{ }^{\mathrm{p}}=b_{3}{ }^{\prime}+b_{V}{ }^{c=0}-2 b_{\mathrm{L}}{ }^{\mathrm{c}-\mathrm{H}}
\end{aligned}
$$

whence

$$
\begin{aligned}
2 b_{1}-b_{2}-b_{3} & =2 b_{1}^{\prime}-b_{2}^{\prime}-b_{3}^{\prime}+2 b_{\mathrm{L}} \mathrm{coo}-b_{\mathrm{T}} \mathrm{coo}-b_{\mathrm{V}}^{c o-0} \\
& =2 b_{1}^{\prime}-b_{1}^{\prime}-b_{3}^{\prime}+3 b_{\mathrm{L}}{ }^{c o 0}-b_{\mathrm{Tot}}^{c=0}
\end{aligned}
$$

(where $b_{\text {Tot }}{ }^{600}$ signifies the total of the longitudinal and two transverse polarisabilities of the $\mathrm{C}=\mathrm{O}$ bond-it can be calculated from link refractivities).

Similarly for the cyclopentyl halides the molecular semi-axes are :

$$
\begin{aligned}
& b_{1}=b_{1}{ }^{\prime} \cos ^{2} 109^{\circ} 28^{\prime} / 2+b_{3} \sin ^{2} 109^{\circ} 28^{\prime} / 2+b_{\mathrm{L}}^{\mathrm{C}-\mathrm{Hal}}-b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}} \\
& b_{2}=b_{2}^{\prime}+b_{\mathrm{T}}^{\mathrm{C}-\mathrm{Hal}}-b_{\mathrm{L}} \mathrm{C}-\mathrm{H} \\
& b_{3}=b_{3}{ }^{\prime} \cos ^{2} 109^{\circ} 28^{\prime} / 2+b_{1} \sin ^{2} 109^{\circ} 28^{\prime} / 2+b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{Hal}}-b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}
\end{aligned}
$$

Using a $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} / b_{\mathrm{T}} \mathrm{c}-\mathrm{C}$ ratio of $3 \cdot 6$, we next proceeded to calculate for cyclopentane itself values $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}$, and $b_{3}{ }^{\prime}$ for its tensor ellipsoid. These, in addition to yielding the observed ${ }_{m} K$ for cyclopentane, had other requirements imposed on them: (1) They had to represent the three principal polarisabilities of a stereochemical conformation which might reasonably be expected to exist. (2) They had, when substituted into the expression for $2 b_{1}-b_{2}-b_{3}$ for cyclopentanone, to yield a value for this term from which $\left({ }_{m} K\right)_{\text {calc. }}$ for the compound could be derived and found to be in accordance with $\left({ }_{m} K\right)_{\text {expt. }}$ (3) They had, when inserted into $2 b_{1}-b_{2}-b_{3}$ for cyclopentyl halides, to give figures for $b_{\mathrm{L}}{ }^{\text {c-Hal }}$ and $b_{\mathrm{T}}{ }^{\text {c-Hal }}$ which when used in calculating ${ }_{m} K$ for the cyclohexyl halides produced results in agreement with $\left({ }_{m} K\right)_{\text {expt. }}$ (4) They had to represent the principal polarisabilities of a stereochemical structure on which, with appropriate modifications, we could explain the negativity of ${ }_{m} K$ for tetrahydrofuran.

As already stated, there appeared to be two possible conformations, (III a and b) in which respectively four and three carbon atoms lie in one plane. Only the second of these (IIIb), by the criterion outlined above, satisfied all our results. Its generation can be credibly viewed as follows : initially let the five carbons be disposed as in cyclohexane

[^3](see IV), with tetrahedral angles at E, A, and B; then D and C would be separated by a distance $2 \times(\mathrm{C}-\mathrm{C}$ bond length $) \sin \left(109^{\circ} 28^{\prime} / 2\right)$, whereas in fact 18,25 the distance is $1.54 \AA$. With a model it is found that this distance can be achieved by altering the angles at A, B, and E by a concertina-like movement thus retaining as much staggering as possible

(IIIa)

(III)

Four carbons in one plane.
Three carbons in one plane.
of all the adjacent $\mathrm{C}-\mathrm{H}$ links; it becomes also obvious that C and D cannot both lie in the same plane as B and E.

We think that ideally the correct (single) conformation should be that which affords uniform mutual repulsion of $\mathrm{C}-\mathrm{H}$ bonds; however, being unable to calculate this, a priori, by trial and error we have evolved the structure (V). This is applicable to all the 5 membered rings studied in this paper. With reference to (V) it is specified as follows: If X, M, and Y are the midpoints of $D E, C D$, and $B C$ respectively, then. A, X, M, and Y lie on one plane. The projections of B, C, D, and E on this plane are at $B^{\prime}, C^{\prime}, D^{\prime}$, and E^{\prime}, where $B B^{\prime}=C C^{\prime}=D D^{\prime}=E E^{\prime}=0.32 \AA$. The angles at A, C, and D are, in order, $111^{\circ}, 108^{\circ}$, and 108°, and the C-C distance $1 \cdot 54 \AA$. Then $A B$ and $A E$ lie at an angle R to the horizontal ($A X M Y$ plane), where $R=12^{\circ} 1^{\prime}$; and $C D, B C$, and $D E$ lie at an angle S to the horizontal

(I)

Conformation proposed for cyclopentane.
where $S=24^{\circ} 36^{\prime}$. Angle P is the projection of $\angle B C D$ on $B^{\prime} C D^{\prime}$ in the horizontal plane minus $90^{\circ}, \angle P=35^{\circ} 40^{\prime} ; \angle Q$ is $B^{\prime} A E^{\prime} / 2=54^{\circ} 38^{\prime}$ where $B^{\prime} A E^{\prime}$ is the projection of $\angle B A E$ in the horizontal plane.

Appropriate expressions for the semiaxes of the polarisability ellipsoid are (b_{1} along $X Y$, b_{2} along $M A$) :

$$
\begin{aligned}
& b_{1}=b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime}+b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime} \quad \text { (for } C-D \text {) } \\
& +2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{O}} \cos ^{2} 12^{\circ} 1^{\prime} \cdot \sin ^{2} Q+2 b_{\mathrm{T}} \mathrm{CO} \cos ^{2} Q+2 b_{\mathrm{V}}{ }^{\mathrm{CoO}} \sin ^{2} 12^{\circ} \mathbf{1}^{\prime} \cdot \sin ^{2} Q \\
& \text { (for } A-B \text { and } A-E \text {) } \\
& +2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime} \cdot \sin ^{2} P+2 b_{\mathrm{V}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime} \cdot \sin ^{2} P+2 b_{\mathrm{T}} \mathrm{C}-\mathrm{C} \cos ^{2} P \\
& +10 b_{\mathrm{L}}{ }^{\mathrm{C}} \text { - }{ }^{\text {H }} \\
& b_{2}=b_{T}{ }^{\text {C-C }} \quad(\text { for } C-D) \\
& +2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 12^{\circ} 1^{\prime} \cdot \cos ^{2} Q+2 b_{\mathrm{T}} \mathrm{O}-\mathrm{C} \sin ^{2} Q+2 b_{\mathrm{V}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 12^{\circ} 1^{\prime} \cdot \cos ^{2} Q \\
& \text { (for } A-B \text { and } A-E \text {) } \\
& +2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime} \cdot \cos ^{2} P+2 b_{\mathrm{F}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime} \cdot \cos ^{2} P+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} P \\
& +10 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \\
& b_{3}=2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{O}} \sin ^{2} 12^{\circ} 1^{\prime}+2 b_{V^{\circ}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 12^{\circ} 1^{\prime} \quad \text { (for } A-B \text { and } A-E \text {) } \\
& +2 b_{\mathrm{L}}{ }^{\mathrm{O}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime}+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime} \quad \text { (for } B-C \text { and } D-E \text {) } \\
& +b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime}+b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime} \quad \text { (for } C-D \text {) } \\
& +10 b_{\mathrm{L}} \mathrm{C}-\mathrm{H}
\end{aligned}
$$

From refractivity data, $b_{\text {Tot }}{ }^{\mathrm{G}-\mathrm{C}}$ appears as $0 \cdot 153_{3}$ and $0 \cdot 152_{3} \times 10^{-23}$ respectively in cyclohexane and cyclopentane. Accordingly, with a $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} / b_{\mathrm{T}} \mathrm{C}-\mathrm{C}$ ratio of $3 \cdot 60, b_{\mathrm{T}}{ }^{\mathrm{c}-\mathrm{C}}=$ $0.097_{9} \times 10^{-23}$ and $b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}}=0.027_{2} \times 10^{-23}$ for the $\mathrm{C}-\mathrm{C}$ bond in 5 -membered rings. Therefore, for cyclopentane we have :

$$
\begin{aligned}
& 10^{23} b_{1}=0.962,10^{23} b_{2}=0.891,10^{23} b_{3}=0.814 \\
& 10^{35} \theta_{1}=0.178, \text { and }{ }_{\infty}(m K)_{\text {calc. }}=0.74_{9} \times 10^{-12}
\end{aligned}
$$

The last figure compares well with ${ }_{\infty}(m K)_{\text {expt. }}=0.75 \times 10^{-12}$.
Verification of Proposed cycloPentane Structure.-The argument concerning cyclopentanone will be set out first. For acetone, according to Allen and Sutton's list, ${ }^{25}$ the $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angle is 123°; using $b^{\text {ac }}$ to refer to acetone, we may write :

$$
\begin{aligned}
& b_{1}{ }^{\text {ac }}=b_{\mathrm{L}}{ }^{\mathrm{c}-\mathrm{O}}+2{b_{\mathrm{L}}}^{\mathrm{C}-\mathrm{C}} \cos ^{2} 57^{\circ}+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 57^{\circ}+6 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \\
& b_{2}{ }^{\text {ac }}=b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{O}}+2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 57^{\circ}+2 b_{\mathrm{T}}{ }^{\mathrm{c}-\mathrm{C}} \cos ^{2} 57^{\circ}+6 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \\
& b_{3}{ }^{\text {ac }}=b_{V}{ }^{\mathrm{O}-\mathrm{O}}+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}}+6 b_{\mathrm{L}} \mathrm{C}-\mathrm{H}
\end{aligned}
$$

We ${ }^{7}$ found $\infty\left({ }_{m} K_{2}\right)^{\text {ac }}$ to be 101×10^{-12}, whence $\theta_{1}+\theta_{2}=24.0 \times 10^{-35}$. As a near approximation let $\theta_{1}=1 \times 10^{-35}$, then $\theta_{2}=2.3 \times 10^{-34}$. By use of equation (3), and with $b_{\text {Tot }}{ }^{c-0}$ in acetone $=0.394 \times 10^{-23}, b_{\mathrm{L}}{ }^{(\gamma-0}$ emerges as 0.230×10^{-23}. If now in the expressions giving b_{1}, b_{2}, and b_{3} for cyclopentanone, as set out above, we write the values previously calculated for b_{1}, b_{2}, and b_{3} of cyclopentane, and adopt $b_{\mathrm{L}}{ }^{0-0}=0.230 \times 10^{-12}$, then $\theta_{2}{ }^{\text {cp }}$ may be computed as 33.8×10^{-35}, which is in good agreement with $\left(\theta_{1}+\theta_{2}\right)_{\text {axpt. }}=$ $35 \cdot 11 \times 10^{-35}$; or, if we transform to molar Kerr constants and assume $\theta_{1}{ }^{\text {cp }}=1 \times 10^{-35}$, we have $\left({ }_{m} K\right)_{\text {calc. }}=146.3 \times 10^{-12}$ against $\left(_{m} K\right)_{\text {expt. }}=147.6 \times 10^{-12}$.

No precise stereostructure for cyclopentanone seems to have been given before. Erlandsson, ${ }^{26}$ from the micro-wave spectrum of this ketone, recently concluded that the carbon ring is non-planar.

Another test involves cyclopentyl chloride, bromide, and iodide. From the measured $\omega_{\infty}\left({ }_{m} K_{2}\right.$'s and moments of these substances, by neglecting θ_{1} because the μ 's involved are not small, and by using equation (3) we obtained $2 b_{1}-b_{2}-b_{3}$, whence, using configuration (V), $b_{\mathrm{L}}{ }^{\text {C-Hal }}$ and $b_{\mathrm{T}}{ }^{\text {c-Hal }}$ were deduced as follows :

	$\mathrm{C}-\mathrm{Cl}$	$\mathrm{C}-\mathrm{Br}$	C-I
$10^{23} b_{\text {L }}$	$0 \cdot 382$	0.530	$0 \cdot 807$
$10^{23} b_{\text {T }}$	$0 \cdot 185$	$0 \cdot 270$	$0 \cdot 418$

We assumed that the last quantities were likely to be the same in 5 - as in 6 -membered rings. By insertion in the expression for b_{1}, b_{2}, and b_{3} for the "equatorial" and the " axial " conformations of each of the cyclohexyl halides, θ_{1} and θ_{2} and hence the ${ }_{m} K$'s were computed.

The relations applicable are (where $b^{\text {ch }}$ refer to cyclohexanone) :
For the " equatorial" halides :

$$
\begin{aligned}
& b_{1}=b_{\mathrm{L}} \mathrm{C} \text {-Hal }+b_{1}{ }^{\text {ch }} \cos ^{2} 19^{\circ} 28^{\prime}+b_{3}^{\text {ch }} \sin ^{2} 19^{\circ} 28^{\prime}-b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}} \\
& b_{2}=b_{\mathrm{T}} \mathrm{C} \text {-Hal }+b_{2}{ }^{\text {ch }}-b_{\mathrm{L}} \mathrm{C}-\mathrm{H} \\
& b_{3}=b_{\mathrm{T}}{ }^{\mathrm{C} \text {-Hal }}+b_{3}{ }^{\text {ch }} \cos ^{2} 19^{\circ} 28^{\prime}+b_{1}{ }^{\text {ch }} \sin ^{2} 19^{\circ} 28^{\prime}-b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}
\end{aligned}
$$

For the " axial " halides :

$$
\begin{aligned}
& b_{1}=b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{Hal}}+b_{3}{ }^{\text {ch }}-b_{\mathrm{L}}^{\mathrm{O}-\mathrm{H}} \\
& b_{2}=b_{3}=b_{\mathrm{L}}{ }^{\text {C-Hal }}+b_{1}{ }^{\text {ch }}-b_{\mathrm{L}}{ }^{\text {C-H }}
\end{aligned}
$$

The results expressed as molar Kerr constants are :

cycloHexyl halide	$10^{12}{ }_{m} k_{\text {calc. }}$. Equatorial confn.	$10^{12}{ }_{m} K_{\text {calc. }}$. Axial confn.	$10^{12}{ }_{m} K_{\text {expt }}$
Chloride	130	42	122
Bromide	179	82	181
Iodide	246	152	249

[^4]The equatorial conformations of these halides are thus unambiguously indicated. Such would not be the case had the molecular ellipsoid for cyclopentane been seriously in error. The conclusion is in harmony with other work reviewed by Hassel. ${ }^{11}$

The Conformation of Tetrahydrofuran.-It next became of interest to know whether the model for cyclopentane was applicable to other 5 -membered ring molecules. Tetrahydrofuran was therefore considered, the following dimensions (Allen and Sutton ${ }^{25}$) being used : $\mathrm{C}-\mathrm{O}$ distance $1.43 \AA$; C-C distance $1.54 \AA$; angle $\mathrm{C}-\mathrm{O}-\mathrm{C} 111^{\circ} \pm 2^{\circ}$. On the basis of form (V) let the oxygen atom lie at position A and the carbon atoms be at B, C, D, and E; take the mid-points of $D E, C D$, and $B C$ respectively as X, M, and Y, and regard the $A X M Y$ plane as horizontal, and denote the projections of B, C, D, and E on to this plane as B^{\prime}, C^{\prime}, D^{\prime}, and E^{\prime} where $B B^{\prime}=C C^{\prime}=D D^{\prime}=0.32 \AA$. The angles at A, C, and D are $111^{\circ} \pm 2^{\circ}$ while those corresponding to R, S, P, and Q in cyclopentane emerge, in order, as $12^{\circ} 57^{\prime}$, $24^{\circ} 36^{\prime}, 43^{\circ} 2^{\prime}$, and 55°. Then, putting b_{1} along the direction of $\mu_{\text {resultant, }}$ i.e., along $M A$, and b_{2} along $X Y$, we have (writing $b^{\text {tf }}$ to refer to tetrahydrofuran) :

$$
\begin{aligned}
& b_{1}{ }^{\text {tf }}=b_{\mathrm{T}}^{\mathrm{C}-\mathrm{C}} \quad(\text { for } C-D) \\
& +2 b_{\mathrm{L}}{ }^{\mathrm{C} O} \cos ^{2} 12^{\circ} 57^{\prime} \cdot \cos ^{2} Q+2 b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{O}} \sin ^{2} Q+2 b_{\mathrm{T}}{ }^{\mathrm{CoO}} \sin 12^{\circ} 57^{\prime} \cdot \cos ^{2} Q \\
& \text { (for } A-B \text { and } A-E \text {) } \\
& +2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime} \cdot \cos ^{2} P+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime} \cdot \cos ^{2} P+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} P \\
& +8 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \\
& b_{2}{ }^{\mathrm{tf}}=b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime}+b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime} \quad \text { (for } C-D \text {) } \\
& +2 b_{\mathrm{L}} \mathrm{C}-\mathrm{O} \cos ^{2} 12^{\circ} 57^{\prime} \cdot \sin ^{2} Q+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{O}} \cos ^{2} Q+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{O}} \sin ^{2} 12^{\circ} 57^{\prime} \cdot \sin ^{2} Q \\
& \text { (for } A-B \text { and } A-E \text {) } \\
& +2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime} \cdot \sin ^{2} P+2 b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime} . \sin ^{2} P+2 b_{\mathrm{T}}{ }^{\mathrm{c}-\mathrm{C}} \cos ^{2} P \\
& +8 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \\
& b_{3}{ }^{\text {tf }}=2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{O}} \sin ^{2} 12^{\circ} 57^{\prime}+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{O}} \cos ^{2} 12^{\circ} 57^{\prime} \quad \text { (for } A-B \text { and } A-E \text {) } \\
& +2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime}+2 b_{\mathrm{T}} \mathrm{~T}^{\mathrm{O}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime} \quad \text { (for } B-C \text { and } D-E \text {) } \\
& +b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \sin ^{2} 24^{\circ} 36^{\prime}+b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 24^{\circ} 36^{\prime} \quad \text { (for } C-D \text {) } \\
& +8 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}
\end{aligned}
$$

Adopting the same $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}}$ and $b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{C}}$ values as for cyclopentane, and using a $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{o}} / b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{O}}$ ratio of 2.08 (derived from ${ }_{m} K$ for paraldehyde as discussed below), together with $\mu_{\text {expt. }}=1.81 \mathrm{D}$, yields :

$$
10^{23} b_{1}=0.759, \quad 10^{23} b_{2}=0.836, \quad 10^{23} b_{3}=0.706
$$

whence

$$
\theta_{1}+\theta_{2}=-0.54 \times 10^{-35}
$$

and ${ }_{m} K_{\text {calc. }}=-2.27 \times 10^{-12}$, compared with ${ }_{\infty}\left({ }_{n} K_{2}\right)_{\text {expt. }}=-2.4 \times 10^{-12}$.
Agreement between prediction and measurement is satisfactory. It may be remarked that the alternative model, analogous to the C_{S} form of cyclopentane, requires for a negative Kerr constant a considerable interplanar angle; although such folding may be forced in rigid polycyclic molecules, e.g., cantharidin, it is quite credible that it cannot be held in single, and therefore more flexible, ring systems. It is relevant that Tschamler and Voetter, ${ }^{16}$ from Raman and infrared spectral data, could only conclude that tetrahydrofuran had pseudo-symmetry $\mathrm{D}_{5 \mathrm{~h}}$, i.e., that the ring was not completely flat (a similarly qualitative opinion had been reported by Beach ${ }^{27}$ in 1941); on the other hand, tetrahydrothiophen was recognised ${ }^{16}$ as probably having symmetry C_{2}, i.e., symmetry of the type here allotted to tetrahydrofuran.

Derivation of $b_{\mathrm{L}}{ }^{\mathrm{CoO}}$ and $b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{O}}$. - In paraldehyde it is considered that the three methyl

[^5]groups are disposed equatorially. ${ }^{28-33}$ Allen and Sutton ${ }^{25}$ list $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ separations of 1.43 and $1.54 \AA$. The molecular skeleton, by analogy with trioxan, $, 34,35$ and by relationship with dioxan, ${ }^{36,37}$ is a " staggered " or chair structure. On these premises, putting b_{1} in the direction of $\mu_{\text {resultant }}$, we may write :
\[

$$
\begin{aligned}
& b_{1}=6 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{O}} \sin ^{2} 19^{\circ} 28^{\prime}+6 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{O}} \cos ^{2} 19^{\circ} 28^{\prime}+3 b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}+3\left[b_{\mathrm{L}}^{\mathrm{C}-\mathrm{O}} \cos ^{2}\left(90-19^{\circ} 28^{\prime}\right)\right] \\
&+3 b_{\mathrm{T}}^{\mathrm{C}-\mathrm{C}} \cos ^{2} 19^{\circ} 28^{\prime}+9 b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}
\end{aligned}
$$
\]

$$
\begin{aligned}
\text { and } b_{2}= & b_{3}=2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{O}} \cos ^{2} 19^{\circ} 28^{\prime} \cdot\left(2 \cos ^{2} 60^{\circ}+1\right)+2 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{O}}\left(2 \cos ^{2} 30^{\circ}\right. \\
& \left.+2 \sin ^{2} 19^{\circ} 28^{\prime} \cdot \cos ^{2} 60^{\circ}+\sin ^{2} 19^{\circ} 28^{\prime}\right)+12 b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}+b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{C}} \cos ^{2} 19^{\circ} 28^{\prime} \\
& +b_{\mathrm{T}}^{\mathrm{oo}} \sin ^{2} 19^{\circ} 28^{\prime}+2\left(b_{\mathrm{L}}^{\mathrm{C}-\mathrm{C}} \cos ^{2} 19^{\circ} 28^{\prime} \cdot \cos 60^{\circ}+b_{\mathrm{T}}^{\mathrm{C}-\mathrm{C}} \sin 19^{\circ} 28^{\prime} \cdot \cos 60^{\circ}\right. \\
& \left.+b_{\mathrm{T}}^{\mathrm{O}-\mathrm{o}} \cos 30^{\circ}\right)
\end{aligned}
$$

In carbon tetrachloride, $\infty\left({ }_{m} K_{2}\right)$ for paraldehyde is now found to be -57.0×10^{-12}, whence, with ${ }_{\mathbb{E}} P=31 \cdot 70$ c.c. and $\mu=1.98 \mathrm{D}, 10^{23} b_{1}=1 \cdot 162$ and $10^{23} b_{2}=10^{23} b_{3}=1 \cdot 292$. Solution of the above equations then gives:

$$
10^{23} b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{o}}=0.081,1023 b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{o}}=0.039, \text { and } b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{O}} / b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{O}}=2.08
$$

In these calculations we have assumed the " chair" angles to be tetrahedral. Small deviations from this value do not appreciably affect the $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{O}} / b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{O}}$ ratio. Further, if expressions for b_{1}, b_{2}, and b_{3} be set up for a paraldehyde structure in which the methyl groups are axially disposed, then computation along the lines just set out produces a $b_{\mathrm{L}}{ }^{0-0} / b_{\mathrm{T}}{ }^{\mathrm{c}-0}$ ratio of approximately 1:2. Such a result, which is highly unlikely, can be regarded as further evidence for the equatorial disposition of the three methyl groups.

Conformation of cycloHexanone.-Results already mentioned in this paper allow a priori calculations to be made of ${ }_{\infty}\left(K_{m} K_{2}\right)$ for cyclohexanone in its boat and chair conformations ; $b_{\mathrm{L}}^{0-0}=0.230 \times 10^{-23}$ is derived from acetone. We have for the chair form :

$$
\begin{aligned}
& b_{1}{ }^{\text {ch }}=b_{1}{ }^{\text {ch }} \sin ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+b_{3}{ }^{\text {ch }} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+b_{\mathrm{L}}{ }^{(0-0}-2 b_{\mathrm{L}}{ }^{0-\mathrm{H}} \\
& b_{2}{ }^{\text {ch }}=b_{2}{ }^{\text {ch }}+b_{\mathrm{T}}{ }^{0-0}-2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \\
& b_{3}{ }^{\text {ch }}=b_{3}{ }^{\text {ch }} \sin ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+b_{1}{ }^{\text {ch }} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+b_{\nabla}{ }^{\mathrm{coO}}-2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}
\end{aligned}
$$

and for the boat form :

$$
\begin{aligned}
& b_{1}{ }^{\text {ch }}=b_{\mathrm{L}}{ }^{0-0}+{b_{2}}^{\text {ch }} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+b_{3}{ }^{\text {ch }} \sin ^{2}\left(109^{\circ} 28^{\prime} / 2\right)-2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}} \\
& b_{2}{ }^{\text {ch }}=b_{T}{ }^{0-0}+b_{1}{ }^{\text {ch }}-2 b_{\mathrm{L}}{ }^{\mathrm{c}-\mathrm{H}} \\
& \left.b_{3}{ }^{\text {ch }}=b_{\nabla}{ }^{0-0}+b_{2}{ }^{\text {ch }} \sin ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+b_{3}{ }^{\text {ch }} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right)-2 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}\right]
\end{aligned}
$$

From these equations we deduce molar Kerr constants for the two forms as follow :

$$
\text { Chair, }{ }_{m} K_{\text {calc. }}=178 \times 10^{-12} \quad \text { Boat, }{ }_{m} K_{\text {calc. }}=54 \times 10^{-12}
$$

The observed ${ }_{\infty}\left({ }_{m} K_{2}\right)$ being 183×10^{-12}, we conclude that cyclohexanone under our conditions exists in the chair form.

Conformation of cycloHexane-1 : 4-dione.-This substance has been studied in benzene, because of its sparing solubility in carbon tetrachloride; its $\infty\left({ }_{m} K_{2}\right)$ is $\mathbf{- 4 1 . 2} \times 10^{-12}$.

[^6]Older evidence ${ }^{38}$ for non-enolisation has now been supplemented by infrared spectral data (see Experimental section) which confirm this conclusion. In the absence of enol forms, negativity of ${ }_{m} K$ must be due to the presence of one or more boat conformations.

Accordingly we set up the expressions for b_{1}, b_{2}, and b_{3}, of the three possible configurations indicated in (VI).

For the chair form A we have:

$$
\begin{aligned}
& b_{1}=2 b_{\mathrm{L}}{ }^{\mathrm{O}-\mathrm{O}}+b_{1}^{\text {ch }} \sin ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+b_{3}{ }^{\text {ch }} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right)-4 b_{\mathrm{L}}^{\mathrm{O}-\mathrm{H}} \\
& b_{2}=2 b_{\mathrm{T}}{ }^{\mathrm{O} \mathrm{O}}+b_{1}{ }^{\text {ch }}-4 b_{\mathrm{L}}^{\mathrm{O}-\mathrm{H}} \\
& b_{3}=2 b_{\mathrm{V}}^{0-\mathrm{O}}+b_{1}^{\text {ch }} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+b_{3}^{\text {ch }} \sin ^{2}\left(109^{\circ} 28^{\prime} / 2\right)-4 b_{\mathrm{L}}{ }^{\mathrm{CH}}
\end{aligned}
$$

For the boat form B we have :

$$
\begin{aligned}
& b_{1}=b_{3}{ }^{\text {ch }}-4 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}+2 b_{\mathrm{L}}^{0-0} \sin ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+2 b_{\mathrm{V}}{ }^{0-0} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right) \\
& b_{2}=b_{2}{ }^{\mathrm{ch}}-4 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}+2 b_{\mathrm{L}}{ }^{0-0} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right)+2 b_{\mathrm{V}}{ }^{0-\mathrm{O}} \sin ^{2}\left(109^{\circ} 28^{\prime} / 2\right) \\
& b_{3}=b_{1}{ }^{\text {ch }}-4 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}+2 b_{\mathrm{T}}{ }^{\mathrm{c}-\mathrm{O}}
\end{aligned}
$$

(In this computation and those following, polarisabilities written as $b_{1}{ }^{\text {ch }}, b_{2}{ }^{\text {ch }}$, and $b_{3}{ }^{\text {ch }}$ are those appropriate for the boat conformation.) For the boat form C we must first refer to (VII). Let $A B C D E F$ be the skeleton structure of this form ($A B=l$); the $\mathrm{C}=\mathrm{O}$ links at C and F lie in the $A B C D$ and the $A D E F$ plane respectively. A^{\prime} lies on $A D$ and is the projection of A perpendicular to $B F$. Then $A F A^{\prime}=19^{\circ} 28^{\prime}$. Because μ at F bisects the angle $A F E, \angle A^{\prime} F K=109^{\circ} 28^{\prime} / 2-19^{\circ} 28^{\prime}$; therefore μ at F makes an angle $109^{\circ} 28^{\prime} / 2$ with $D A ; F A^{\prime}=l \cos 19^{\circ} 28^{\prime}$, and $F A^{\prime \prime}=l \sin 109^{\circ} 28^{\prime} / 2$ (where $A^{\prime \prime}$ is the projection of A^{\prime} on to $B F$); then $\angle F A^{\prime} A^{\prime \prime}=60^{\circ}$, and $\angle F A^{\prime} B=120^{\circ}$.

Accordingly, taking b_{1} along $\mu_{\text {resultant }}$ we have :

$$
\begin{aligned}
& b_{1}=b_{3}{ }^{\text {ch }}+2 b_{\mathrm{L}}^{0-\mathrm{O}} \sin ^{2} 109^{\circ} 28^{\prime} \cdot \cos ^{2} 60^{\circ}+2 b_{\mathrm{V}}^{0-\mathrm{O}} \sin ^{2} 60^{\circ} \\
& \quad+2 b_{\mathrm{T}}{ }^{\circ 0} \cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right) \cos ^{2} 60^{\circ}-4 b_{\mathrm{L}}-\mathrm{H} \\
& b_{2}=2 b_{\mathrm{L}}{ }^{\mathrm{O-O}} \cos ^{2}\left(90^{\circ}-\phi\right)+2 b_{\mathrm{V}}{ }^{0-0} \sin ^{2}\left(90^{\circ}-\phi\right)+b_{1}{ }^{\text {ch }} \cos ^{2} \omega+b_{2}{ }^{\text {ch }} \sin ^{2} \omega-4 b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}
\end{aligned}
$$

where

$$
\cos ^{2} \omega=\cos ^{2}\left(109^{\circ} 28^{\prime} / 2\right) \cos ^{2}\left(90^{\circ}-\phi\right)
$$

and

$$
\cos \phi=\sin \left(109^{\circ} 28^{\prime} / 2\right) \cdot \cos 60^{\circ}=65^{\circ} 54^{\prime}
$$

$$
b_{3}=2 b_{\mathrm{T}}{ }^{\mathrm{O}-\mathrm{O}}+b_{1}{ }^{\text {ch }} \sin ^{2} \omega+b_{2}^{\text {ch }} \cos ^{2} \omega-4 b_{\mathrm{L}} \mathrm{C}-\mathrm{H}
$$

Resultant moments are calculated for models (A), (B), and (C) by using $\mu^{0-0}=3 \cdot 14 \mathrm{D}$ (as in cyclohexanone). In order to avoid an accumulated error in $b_{\mathrm{L}}{ }^{0}{ }^{-0}$, we redetermined this value directly from ${ }_{m} K$ for cyclohexanone, following the procedure previously discussed for obtaining $b_{\mathrm{L}} \mathrm{C}$-Hal and $b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{Hal}}$ from cyclopentyl halides. We thus found $b_{\mathrm{L}}{ }^{0-0}=$ 0.236×10^{-23} and $b_{\mathrm{V}}^{0-0}+b_{\mathrm{T}}{ }^{0-0}=0.164 \times 10^{-23}$. Substituting for $b_{\mathrm{L}}{ }^{0-0}$ in the expanded $\theta_{1}+\theta_{2}$ term gives $b_{V}{ }^{0-0}=0.025 \times 10^{-23}$ and $b_{T}{ }^{0-0}=0.139 \times 10^{-23}$. These values and $\mu_{\text {resultant }}$ for (B) and (C) can only be regarded as near estimates because of their mode of derivation.
${ }^{38}$ Le Fèvre and Le Fèvre, $J ., 1935,1696$.

Our final calculations in comparison with experiment are :
Configuration
(A)
(B)
(C)
$10^{12}\left({ }_{m} K\right)_{\text {calc. }}$
7.6
16.8
-233

The results are in conformity with a 20% mixture of (C) and 80% of (A). Incidentally, the observed dipole moment, $1 \cdot 2 \mathrm{D}$, can reasonably be shown to correspond with 21% of (C) and 79% of (A). Such excellent agreement between two different methods we regard as fortuitous.

It is interesting that in conformation (C) the two $\mathrm{C}=\mathrm{O}$ dipoles are situated in those positions that allow maximum staggering of the adjacent $\mathrm{C}-\mathrm{H}$ bonds in the molecule. Conformation (B) does not permit this. Our conclusions thus support ideas that in saturated cyclic hydrocarbons mutual repulsions between $\mathrm{C}-\mathrm{H}$ links are the dominant factors determining configuration. Although form (C) is not that discussed ${ }^{38}$ by us in 1935, the fact remains that cyclohexane-1 : 4-dione is still the only example of a monocyclic cyclohexane derivative whose existence in a boat conformation has been detected by experiment (cf. Hassel ${ }^{11}$).

(III)

(피I)

(IX)

Conformation of Camphor.-Bredt's classical formula for this ketone, (VIII), contains two fused non-planar 5-rings. It is therefore of interest to explore the applicability of our cyclopentane conformation to such a case.
$\infty\left({ }_{m} K_{2}\right)$ of (土)-camphor is 115×10^{-12}. Let θ_{1} be approx. 1×10^{-35}, then $\theta_{2}=2.64 \times 10^{-34} ;$ and since $\mu=3.1_{1} \mathrm{D}, 2 b_{1}-b_{2}-b_{3}=0.208 \times 10^{-23}$. Because $b_{1}+b_{2}+b_{3}=5 \cdot 201 \times 10^{-23}$ (from refractivity), b_{1} emerges as $1 \cdot 80_{3} \times 10^{-23}$ and $\left(b_{2}+b_{3}\right)$ as $3 \cdot 39_{8} \times 10^{-23}$. Since b_{1} lies along $\mu_{\text {resultant }}$ we can write (using $b^{\text {cam }}$ to refer to camphor, and $b^{\text {sk }}$ to refer to the carbon skeleton) :

$$
\begin{gathered}
b_{\mathbf{1}}{ }^{\text {cam }}=b_{1}{ }^{\text {sk }}+\frac{18}{3} b_{\mathrm{Tot}}{ }^{\mathrm{C}-\mathrm{H}}+b_{\mathrm{L}}^{\mathrm{O}-\mathrm{O}} \\
\left(b_{\mathbf{2}}+b_{3}\right)^{\text {cam }}=\left(b_{\mathbf{2}}+b_{3}\right)^{\text {sk }}+\frac{32}{3} b_{\mathrm{Tot}}{ }^{\mathrm{C}-\mathrm{H}}+b_{\mathrm{T}}{ }^{\mathrm{C} O}+b_{\mathrm{V}}{ }^{\mathrm{C}=0}
\end{gathered}
$$

If we adopt $b_{\mathrm{L}}{ }^{\mathrm{GO}}=0.230 \times 10^{-23}$, as in cyclopentanone, and $b_{\text {Tot }}{ }^{0-0}=0.432 \times 10^{-23}$ (obtained from $b_{1}+b_{2}+b_{3}$ for camphor, viz., $5 \cdot 201 \times 10^{-23}$. This, equals $8 b_{\mathrm{Tot}^{\mathrm{G}-\mathrm{C}}}$, as in 5 -membered rings, plus $3 b_{\mathrm{Tot}}{ }^{\mathrm{G}-\mathrm{C}}$ as in propane, plus $16 b_{\mathrm{Ttt}}{ }^{\mathrm{C}-\mathrm{H}}$, plus $\left.b_{\mathrm{T}, \mathrm{t}}{ }^{0-0}\right)$ then $b_{1}{ }^{\text {sk }}=1 \cdot 57_{3}$ $\times 10^{-23}$ and $\left(b_{2}+b_{3}\right)^{\text {sk }}=3 \cdot 19_{6} \times 10^{-23}$.

We shall now attempt, so far as available data make possible, to compute the ellipsoid of the skeleton. In Model (IX) let the $\mathrm{C}=\mathrm{O}$ dipole act at A, the gem.-dimethyl group lie at G, and the other methyl group at F. Let M, X, Y, and Z be the mid-points of $C G$, $B C, G F$, and $E F$. In the five-membered ring $A B C G F b_{1}{ }^{\prime}$ and $b_{2}{ }^{\prime}$ lie along $M A$ and $X Y$ respectively, and for the ring $C D E F G b_{1}{ }^{\prime \prime}$ and $b_{2}{ }^{\prime \prime}$ lie along $D Y$ and $Z M$ respectively. Carbon atoms B and E must of necessity be situated in space above what in (VIII) would be the $A B D E$ plane. The effect of this on the 6 -membered ring $A B C D E F$ is to permit staggering of adjacent $\mathrm{C}-\mathrm{H}$ links at D and E-an advantage not associated with (VIII). Information concerning the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at G and F is not available : we assume them to be tetrahedral. From a model it is seen that $D Y$, and $A M$ and $X Y$ and $Z M$ are roughly perpendicular to one another. We may therefore regard the carbon atoms $A-G$ as comprising two 5 -membered rings $A B C G F$ and $C D E F G$, where $b_{1}{ }^{\prime}$ is perpendicular to $b_{1}{ }^{\prime \prime}$, so that, if in computing the molecular polarisability of the skeleton we, in effect, superimpose $b_{1}{ }^{\prime \prime}, b_{2}{ }^{\prime \prime}, b_{3}{ }^{\prime \prime}$ appropriately on $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}$, and $b_{3}{ }^{\prime}$, we obtain a nearly isotropic whole. However, in so doing, we have used the $F G$ and the $G C$ link twice, and have not taken into consideration the bonds $F-\mathrm{Me}^{3}, G-\mathrm{Me}^{\mathbf{1}}$, and $G-\mathrm{Me}^{2}$. The contributions of $G-\mathrm{Me}^{1}$ and $G-\mathrm{Me}^{2}$ compensate for the double use of $F G$ and $G C$, and accordingly, as a near estimate, it seems that it is only the anisotropy of polarisability of the $\mathrm{C}-\mathrm{C} \operatorname{link} F-\mathrm{Me}^{3}$ which could result in the camphor skeleton's becoming non-isotropic; in other words, we conclude that approximately $b_{1}^{\text {sk }}=b_{2}{ }^{\text {sk }}=b_{3}{ }^{\text {sk }}$, or $2 b_{1}{ }^{\text {sk }} \sim\left(b_{2}+b_{3}\right)^{\text {sk }}$. This is in agreement with the values $2 b_{1}^{\text {sk }}=3 \cdot 14_{6} \times 10^{-23}$ and $\left(b_{2}+b_{3}\right)^{\text {sk }}=3 \cdot 19_{6} \times 10^{-23}$ obtained from our experimental $\omega_{m}\left(K_{2}\right)$ for camphor.

Experimental

Materials.-The solutes were redistilled or recrystallised, as necessary, before use and had the b. p.s or m. p.s recorded for pure samples in Beilstein's "Handbuch." The authors thank Mr. D. G. Pettit for preparing cyclohexane-1:4-dione. Solvents were purified as noted in ref. 6.

Infraved Spectrum of cycloHexane-1:4-dione.-This was kindly recorded, for a Nujol mull down to $650 \mathrm{~cm} .^{-1}$ and for a solution ($w_{2}=0.0533$) in benzene down to $1250 \mathrm{~cm} .^{-1}$, by Mr. R. L. Werner (N.S.W. University of Technology). Absorption frequencies in $\mathrm{cm} .^{-1}$ noted (other than those due to Nujol or benzene) were :

For the mull : 1710 (s and broad), 1404 (w), 1342 (w), 1325 (w), 1310 (m), 1295 (w), 1260 (vw), $1200(\mathrm{vw}), 1167(\mathrm{w}), 1142(\mathrm{~m}), 1086(\mathrm{w}), 1062(\mathrm{w}), 964(\mathrm{~m}), 925(\mathrm{~m}), 872(\mathrm{w}), 803(\mathrm{~s})$;

For the solution : 1727 (s), 1417 (m), 1394 (w), 1330 (w shoulder), 1306 (m), 1290 (w, shoulder), 1258 (m).
($\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{v}=$ very.)
The majority of these bands can be assigned straightforwardly to various $\mathrm{C}-\mathrm{H}$ and skeletal motions. We follow Ramsay and Sutherland ${ }^{39} \mathrm{in}$ attributing the feature at $803 \mathrm{~cm} .^{-1}$ to $\mathrm{C}-\mathrm{C}$ stretching ($802 \mathrm{~cm} .^{-1}$ in the Raman spectrum of liquid cyclohexane ${ }^{39}$). Absorptions at 1404 (mull) or $1417 \mathrm{~cm} .^{-1}$ (solution) recall the observation by Francis ${ }^{40}$ that CH_{2} groups adjacent

Table 1. Solvent constants.

Temp.	$10^{7} B_{\mathrm{D}}$	$n_{\text {D }}$	d_{4}^{t}	ε_{1}	H	J	10^{14}. K_{1}
Carbon tetrachloride							
20°	$0 \cdot 072$	1.4604	1.5940	$2 \cdot 2360$	2.064	0.4721	0.761
25	$0 \cdot 070$	$1 \cdot 4575$	$1 \cdot 5845$	2.2270	2.060	$0 \cdot 4731$	0.749
Benzene							
25	$0 \cdot 410$	$1-4973$	$0 \cdot 8738$	$2 \cdot 2725$	$2 \cdot 114$	0.4681	7.56

to carbonyl display deformational frequencies $c a .1410 \mathrm{~cm} . .^{-1}$, i.e., lower than the " normal" $1453 \mathrm{~cm} .^{-1}$ found in, e.g., cyclohexane. For our purposes, however, the important point is that no sign was detected of OH absorption in the $3400-3600 \mathrm{~cm} .^{-1}$ region. Apart from the $\mathrm{C}-\mathrm{H}$ bands, the spectra of both Nujol and benzene were unaffected by the dione down to the point where $v_{\mathrm{G}=\mathrm{o}}$ became apparent.

[^7]Table 2. Weight fractions, Kerr constants, refractive indexes, and dielectric constants $10^{5} w_{2} \quad 10^{7} \Delta B \quad n_{\mathrm{D}} \quad d \quad$ of solutions at 25°.

$10^{5} w_{2}$	$\begin{array}{r} 10^{7} \Delta B \\ c l o \mathrm{Hexar} \end{array}$	$\begin{gathered} n_{\mathbf{D}} \\ \text { in } \begin{array}{c} \text { carbc } \end{array} \end{gathered}$	tetrachlor	
1574	-0.000_{5}	$1 \cdot 4567$	1.55992	
2618	-	$1 \cdot 4556$	1.54280	
3083	-0.001		1.53426	2.2188
3202	-0.001	$1 \cdot 4553$		$2 \cdot 2185$
4596		$1 \cdot 4546$		2.2134
5343	-0.002	-		
7036	-0.003	-	1-47413	$2 \cdot 1956$
12,239	-0.005	-		
$\begin{aligned} \text { whence } 10^{7} \Delta B & =-0.0349 w^{2}-0.053 w_{2}^{2} \\ \Sigma \Delta n / \sum w_{2} & =-0.065_{1} \\ \sum \Delta d / \Sigma w_{2} & =1.586_{5} \\ \Sigma \Delta \varepsilon / \Sigma w_{2} & =-0.034_{4} \end{aligned}$				

clo	$10^{7} \Delta B$	$n_{\text {D }}$	${ }^{d}$	ε
	OHexyl chlo	de in c	n tetrachloride	
cyclo	0.043	-		
771	0.068			
1657	$0 \cdot 166$	-	1.5698	$2 \cdot 3565$
2388	$0 \cdot 216$			
3167	$0 \cdot 302$	1.4576	1.5562	2.4738
4984	0.479	1.4578	1.5431	$2 \cdot 615$
9586	$\begin{array}{cl} 0.873 & - \\ \text { whence } 10^{7} \Sigma B & =9.71 w_{2}-6 \cdot 1 w_{2}{ }^{2} \end{array}$			
	$\begin{aligned} \Sigma \Delta n / L w_{8} & =0.0049 \\ \Sigma \Delta d / \Sigma w_{2} & =-0.862_{6} \end{aligned}$			

cycloHexyl bromide in carbon tetrachloride

1646	$0 \cdot 168$	-	-	
2170	$0 \cdot 229$			
2189	$0 \cdot 249$	1.4586	1.5782	$2 \cdot 3651$
2567	$0 \cdot 274$	1.4590	1.5770	$2 \cdot 3858$
5241	0.582	1.4604	1.5692	$2 \cdot 5483$
	$\begin{aligned} \text { whence } 10^{7} \Delta B & =10.48 w_{2}+12.0 w_{2}^{2} \\ \Sigma \Delta n / \Sigma w_{2} & =0.055 \end{aligned}$			
	$\Sigma \Delta d / \Sigma w_{2}=-0.291_{1}$			

cycloHexanone in carbon tetrachloride

887	$0 \cdot 164$		$2 \cdot 4018$	1.5753
949	$0 \cdot 169$			1.5751
1301	0.235			
1771	$0 \cdot 322$		-	1.5666
2159	$0 \cdot 382$	$1 \cdot 4573$		1.5622
2392		$1 \cdot 4572$	$2 \cdot 6913$	
3128	0.563	1.4571	$2 \cdot 8319$	1.5531
734		$1 \cdot 4570$	2.9491	
	whence ${ }^{10} 0^{7} \Delta B=18.0_{7} w_{2}-4.0 w_{2}{ }^{2}$			
	$\begin{aligned} \Sigma \Delta d / \Sigma w_{2} & =-1 \cdot 014 \\ \Sigma \Delta \varepsilon / \Sigma w_{2} & =19.39 \end{aligned}$			

cycloPentyl chloride in carbon tetrachloride

1516.5	0.083	1.4575	1.57122	2.3459
1781	0.097	-	1.5685	2.7308
1843	0.101	-	-	
2730	0.150	1.4572	1.56054	2.4293
2753	0.151	1.4572	-	-
3550	0.195	1.4571	-	-
4901	0.270	1.4570	1.54183	2.6178

whence $10^{7} \Delta B=5 \cdot 45 w_{2}+1 \cdot 1 w_{2}{ }^{2}$

$$
\begin{aligned}
\Sigma \Delta n / \sum w_{2} & =-0.011 \\
\Sigma \Delta d / \sum w_{2} & =0.878_{3} \\
\Sigma \Delta \varepsilon / \Sigma w_{2} & =7.831
\end{aligned}
$$

cycloPentyl iodide in carbon tetrachloride

1431	0.120	-	-	$2 \cdot 2949$
1648	0.138	1.4595	1.58654	2.3012
2473	0.211	1.4597	1.58789	2.3383
2479	0.211	1.4598	-	-
2614	0.229	1.4603	-	-
3191	0.287	1.4604	-	$-\overline{4}$
6962	-	-	-	2.5431
7361	-	1.4638	1.59400	2.5588

whence $10^{7} \Delta B=7 \cdot 64_{1} w_{2}+40.6 w_{2}{ }^{2}$
$\Sigma \Delta n / \Sigma w_{2}=0.093_{6}$
$\Sigma \Delta d / \Sigma w_{2}=0.1298$
$\Sigma \Delta \varepsilon / \Sigma w_{2}=4.53_{5}$

$c y c l o$ Hexyl iodide in carbon tetrachloride				
906	$0 \cdot 100$	1.4585	1.58467	$\mathbf{2 . 2 7 1 0}$
928	0.102	1.4587	-	-
1054	0.117	1.4588	-	-
1590	0.174	1.4594	-	-
1923	0.212	1.4596	$\mathbf{1 . 5 8 4 7 8}$	$\mathbf{2 . 3 1 8 3}$
1445	0.266	1.4601	1.58486	2.3440

cycloPentane in carbon tetrachloride

$$
\begin{aligned}
& \begin{array}{rcccc}
5678 & -0.004 & 1 \cdot 4503 & 1 \cdot 48664 & 2.1948 \\
7155 & -0.005 & - & - & - \\
9289 & -0.006 & - \\
11,697 & -0.007 & 1 \cdot 4426 & 1.39543 & 2.1641 \\
12,889 & -0.007 & 1 \cdot-334 & 1.30270 & 2.1327 \\
18,979 & -0.009 & 1.433
\end{array} \\
& \text { whence } 10^{7} \Delta B=-0.077 w_{2}+0.16 w_{\mathbf{2}}{ }^{2} \\
& \Sigma \Delta n / \Sigma w_{2}=-0.127 \\
& \Delta d=-1.827 w_{2}+1.8 w_{2}{ }^{2} \\
& \Delta \varepsilon=0.600 w_{2}+0.54 w_{2}{ }^{2}
\end{aligned}
$$

cycloPentyl bromide in carbon tetrachloride

658	0.051	-	-	
911	0.063	$1 \cdot 4578$	1.5825	$2 \cdot 2819$
2191	0.139			
2231	$0 \cdot 155$	$1 \cdot 4581$	1.5797	$2 \cdot 361$
3080	0.218	$1 \cdot 4588$	1.5780	$2 \cdot 41$
4592	$0 \cdot 345$	-		
$\begin{aligned} \text { whence } 10^{7} \Delta B & =6 \cdot 19_{5} w_{2}+28.2 w_{2}{ }^{2} \\ \Sigma \Delta n / \Sigma w_{2} & =0.035 \end{aligned}$				
$\Sigma \Delta d / \Sigma w_{2}=-0.2137$				

cycloPentanone in carbon tetrachloride

403	0.075			
477	0.080	-	-	-
533	$0 \cdot 091$	-	-	
559	$0 \cdot 099$	-	1.57895	$2 \cdot 3473$
607	$0 \cdot 105$	-	-	-
768	$0 \cdot 134$	\pm	-	-
889	$0 \cdot 156$	-	-	-
1073	$0 \cdot 190$	1.4572	$1.5738{ }_{5}$	$2 \cdot 4508$
1118	0.198	-	$1 \cdot 5734$	$2 \cdot 4566$
1228	$0 \cdot 218$	-	-	-
1336	$0 \cdot 238$	-	-	-
1886	-	$1 \cdot 4571$	$1 \cdot 5658$	$\mathbf{2 \cdot 6 2 0 4}$
3219	-	$1 \cdot 4569$		
whence $10^{7} \Delta B=16.9{ }_{8} w_{2}+64 w_{2}{ }^{2}$				
$\Sigma \Delta d / \Sigma w_{2}=-0.992_{2}$				

Table 2. (Continued.)

$10^{5} w_{2}$	$10^{7} \Delta B$	$n_{\text {d }}$	d	ε	$10^{5} w_{2}$	$10^{7} \Delta B$	$n_{\text {D }}$	d	ε
Tetrahydrofuran in carbon tetrachloride					(\pm)-Camphor in carbon tetrachloride				
1336	-0.002	1.4571	1.56878	$2 \cdot 3406$	482	0.034	-	-	
2943	-0.005	-			1086	0.081	$1 \cdot 4580$	-	
4443	-	1.4565	1.53316	$2 \cdot 6048$	1134	0.091	$1 \cdot 4581$		
5118	-0.007_{5}				1432		$1 \cdot 4582$	1.5702	$2 \cdot 4020$
5656	$-0.008{ }^{5}$	1.4545	1.51930	$2 \cdot 7067$	2274	$0 \cdot 186$	$1 \cdot 4585$	1.5624	$2 \cdot 5044$
6235	-0.009_{5}	-		-	2945	0.245	$1 \cdot 4588$	$1 \cdot 5562$	$2 \cdot 5863$
10,103	-0.015	-	-	-	4709	-	$1 \cdot 4597$	1-5390	2.7987
$\begin{aligned} \text { whence } \begin{aligned} 10^{7} \Delta B & =-0.152_{1} w \\ \Sigma \Delta n / \Sigma w_{\mathbf{2}} & =-0.038_{5} \\ \Sigma \Delta d / \Sigma w_{2} & =-1.158 \\ \Sigma \Delta \varepsilon / \Sigma w_{2} & =8.49_{2} \end{aligned} \text { 俍 } \end{aligned}$									
cycloHexane-1 : 4-dione in benzene									
$\begin{aligned} & 10^{5} w_{2} \\ & 10^{7} \Delta B \end{aligned}$. $\begin{array}{r}41 \\ -0.0\end{array}$		013	4		$\begin{aligned} & 15 \\ & 034 \end{aligned}$	$\begin{gathered} 2048 \\ -0.038 \end{gathered}$	$\begin{gathered} 3227 \\ -0.067 \end{gathered}$	$\begin{gathered} 3849 \\ -0.079 \end{gathered}$
			whenc	$10^{7} \Delta B$.014 ${ }^{2}$	$2 \cdot 1 w_{2}{ }^{2}$			
Paraldehyde in carbon tetrachloride at 20°									
$10^{5} w_{2}$.. 191						9654	10,833	14,561
$10^{7} \Delta B$. -0.			170		494	-0.473	-0.574	-0.757
				nce ΔB	3.99w	9.4 $w_{2}{ }^{2}$			

Table 3. Calculation of molar Kerr constants at infinite dilution at 25°.

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	$10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$
cycloHexane	-0.034_{4}	-1.001	-0.045	-0.499	$0 \cdot 98{ }_{7}$
cycloHexyl chloride	7.79_{4}	-0.544	0.003	$138 \cdot 7$	$121 \cdot 3$
, bromide	$6.18{ }_{4}$	-0.184	0.038	$149 \cdot 7$	$180 \cdot 7$
,' iodide	$4 \cdot 78{ }_{4}$	$0 \cdot 008{ }_{3}$	0.078	159.5	$248 \cdot 8$
cycloHexanone	$19 \cdot 39$	-0.640	-0.008	258.1	$184 \cdot 2$
cycloHexane-1: 4-dione	$1 \cdot 45{ }_{7} \dagger$	$0.239 \dagger$	$-0.010 \dagger$	-4.91_{2}	$-41 \cdot 2_{2}$
cycloPentane	-0.600	-1.15	-0.087	$-1 \cdot 10$	0.751
cycloPentyl chloride	$7 \cdot 831$	-0.554	-0.007	77.86	$59 \cdot 3_{1}$
", bromide	$6.07{ }_{7}$	-0.135	0.024	88.500	96.82
," iodide	$4.53{ }_{5}$	$0 \cdot 081$,	0.064	109.2	158.4
cycloPentanone	$20 \cdot 8{ }_{6}$	-0.626	-0.014	$242 \cdot 6$	$147 \cdot 6$
Tetrahydrofuran	$8 \cdot 49_{2}$	-0.731	-0.026	$-2.17{ }_{1}$	-2.39_{2}
Paraldehyde	$6 \cdot 21$ +	$-0.605 \ddagger$	$-0.062 \pm$	$-55 \cdot{ }_{2}$ TI	$-57.0{ }_{2}$
(\pm)-Camphor	$12 \cdot 18$	-0.612	$0 \cdot 032$	$105 \cdot 1$	$115 \cdot 0_{5}$

* Solvent : benzene; in other cases, carbon tetrachloride.
\dagger Recalc. from Le Fèvre and Le Fèvre. ${ }^{38}$
\ddagger From Le Fèvre, Mulley, and Smythe. ${ }^{32}$
बI Measured at 20°.
Table 4. Values of $\theta_{1}+\theta_{2}$ and $b_{\text {Tot }}$.

	$10^{35}\left(\theta_{1}+\theta_{2}\right)$	R_{∞} (c.c.)	$10^{23}\left(b_{1}+b_{2}+b_{3}\right)$	Source from which R_{∞} is calculated
cycloHexane	$0 \cdot 23{ }_{5}$	$27 \cdot 15$	$3 \cdot 209$	$12 a$
cycloHexyl chloride	28.85	32-26	3.813	$12 b$
, bromide	42.97	34.71	$4 \cdot 103$	$12 b$
," iodide	$59 \cdot 17$	39.70	$4 \cdot 692$	$12 b$
cycloHexanone	$43 \cdot 80$	27.25	$3 \cdot 221$	$12 a$
cycloHexane-1 : 4-dione	-9.80	27.31	3.228	x
cycloPentane	$0 \cdot 179$	22.57	$2 \cdot 667$	$12 a$
cycloPentyl chloride	$14 \cdot 10$	27.33	$3 \cdot 230$	$12 b$
,, bromide	$23 \cdot 02_{5}$	$30 \cdot 21$	$3 \cdot 571$	$12 b$
, iodide	$37 \cdot 66$	$35 \cdot 15$	$4 \cdot 155$	$12 b$
cycloPentanone	$35 \cdot 11$	22.79	$2 \cdot 694$	$12 a$
Tetrahydrofuran	-0.569	19.38	$2 \cdot 291$	y
Paraldehyde	-13.56	31.70	3.746	
(\pm)-Camphor	$27 \cdot 36$	44.01 *	$5 \cdot 201$	2

* I.e., R_{D} calc. from bond refractions. Refs. : x, Clarke, J., 1912, 101, 1788. y, Böhme and

Schurhoff, Chem. Ber., 1951, 84. 41. z, Vogel, Cresswell, Jeffery, and Leicester, J., 1952, 514.

Table 5. Polarisations at 25° and estimations of dipole moment.

Solute	${ }_{\infty} P_{2}$ (c.c.)	$R_{\text {D }}$ (c.c.)	$\mu(\mathrm{D})^{*}$
cycloHexane	27.8	$27 \cdot 7$	0
cycloHexyl chloride	131.5	33-0	$2 \cdot 18$
" bromide	$142 \cdot 2$	$35 \cdot 6$	$2 \cdot 26$
," iodide	$144 \cdot 7$	$41 \cdot 0_{5}$	$2 \cdot 2{ }^{6}$
cycloHexanone	$231 \cdot 1$	27.87	$3 \cdot 14$
cycloHexane-1: 4-dione \dagger	$59 \cdot 8 \ddagger$	$27 \cdot 7$	$1 \cdot 23$
cycloPentane	$23 \cdot 2$	$23 \cdot 1$	0
cycloPentyl chloride	116.6	27.96	$2 \cdot 0_{6}$
", bromide	126.9	$30 \cdot 99$	$2 \cdot 15$
") iodide	127.2	36.38	$2 \cdot 0$
cycloPentanone	211.0	23.31	$3 \cdot 0$
Tetrahydrofuran	$87 \cdot 8$	$19 \cdot 87$	$1 \cdot 81$
(\pm)-Camphor ..	$241 \cdot 4$	$44 \cdot 0$	$3 \cdot 0{ }_{9}$

* Calc. by assuming ${ }_{\mathrm{p}} P=1 \cdot 05 R_{\mathrm{D}}$. \dagger Solvent : benzene. In other cases, carbon tetrachloride.
\ddagger Recalc. from ref. 38.
Table 6. Previously recorded dipole moments.

cycloHexanecycloHexyl chloride	B. 25°. 28 c.c. 0 (1)
	B. 25°. 143 c.c. $2 \cdot 3$ (1)
	B. 60°. $o^{P}=91 \mathrm{c.c} \quad$.2.07 (2)
	B. $18^{\circ} . \quad$ o $P=94$ c.c. $2 \cdot 10$ (3)
cyclo Hexyl bromide	B. 25°. 150 c.c. $2 \cdot 3$ (1)
	B. 60°. \quad P $P=95$ c.c. 2.11 (2)
	B. 60°. ${ }^{\text {o }} P=83$ c.c. $\quad 1.98$ (2)
cycloHexanone	B. No exptl. details. $2 \cdot 75$ (4)
	B. 25°. 202 c.c. 2.9 (1)
	B. 25°. 211.8 c.c. 3.01 (5)
	D. 25°. $202 \cdot 2$ c.c. $\quad 2 \cdot 90$ (6)
	B. $19{ }^{\circ}$. Dielectric loss method. 3.02 (7)
	CH. 20°. $219 \cdot 7$ c.c. $3 \cdot 04(9)$ CT. 20°. $232 \cdot 8$ c.c. $3 \cdot 14(9)$
cycloPentane	liq. $20^{\circ} \cdot \varepsilon=1.965 . \quad n_{D}^{2} \stackrel{1}{=} 1.984 . \quad 0(10)$
cycloPentyl chloride	B. 25°. 117.2 c.c. 2.08 (11)
" bromide	B. 25°. $130 \cdot 0$ c.c. $2 \cdot 20$ (11)
" ${ }^{\text {a }}$ iodide	B. 25°. 122.8 c.c. 2.06 (11)
cycloPentanone	B. 22°. ${ }^{\circ} P=192 \pm 4$ c.c. 3.00 ± 0.03 (12)
	B. 25°. 197.0 c.c. 2.93 (5)
	B. $20^{\circ}{ }^{\circ} 196.3$ c.c. $2 \cdot 86$ (9)
	CH. 20°. 187.2 c.c. $2 \cdot 81$ (9)
	CT. 20°. 201-3 c.c. 2.93 (9)
Tetrahydrofuran	B. 25°. o $P=60.9$ c.c. 1.71 (13)
	D. $25^{\circ} . \quad{ }^{\circ} P=67 \cdot 8$ c.c. $1 \cdot 81$ (13)
	B. 20°. No polns. given. 1.68 (14)
Camphor	B. $22^{\circ}{ }^{\circ} \quad o^{P}=190 \pm 4$ c.c. $\quad 2.95 \pm 0.03$ (12)
	B. $22^{\circ} . \quad 0 P=181 \pm 3$ c.c. 2.94 ± 0.03 (15)
	B. 20°. 242 c.c. 3.05 (16)
	Hp. Temp. variation of dielectric absn. 2.98 (7)
	Hp_{0} Wave-length variation of dielectric absn. 2.97
	B. 20°. ca. 235 c.c. $2 \cdot 90-2.91$ (17)
	B. $25^{\circ} .241 \cdot 4$ c.c. $3 \cdot 10$ (18)

1 Williams, J. Amer. Chem. Soc., 1930, 52, 1831. ${ }^{2}$ Hassel and Naeshagen, Z. physikal. Chem., 1932, 15, B, 373. ${ }^{3}$ Idem, ibid., 1936, 19, B, 434. *Wolf, ibid., 1929, 3, B, 128 . ${ }^{5}$ Bentley, Everard, Marsden, and Sutton, J., 1949, 2957. ' Halverstadt and Kumler, J. Amer. Chem. Soc., 1942, 64, 1982. ${ }^{7}$ Whiffen and Thompson, Trans. Faraday Soc., 1946, 52, A, 114, 122. ${ }^{8}$ Cripwell and Sutherland, ibid., p. 149. ' Gunthard and Gäumann, Helv. Chim. Acta, 1951, 34, 39. 10 Arkel, Meerlung, and Handel, Rec. Trav. chim., 1942, 61, 767. 11 Rogers and Roberts, J. Amer. Chem. Soc., 1946, 68, 843. ${ }^{12}$ Donle and Volkert, Z. physikal. Chem., 1930, 8, B, 60. ${ }^{13}$ Smyth and Walls, J. Amer. Chem. Soc., 1932, 54, 3230. 14 Robles, Rec. Trav. chim., 1939, 58, 111.15 Wolf, Phys. Z., 1930, 31, 227. ${ }^{16}$ Higasi, Bull. Inst. Phys. Chem. Res. Tokyo, 1932, 11, 729. ${ }^{17}$ Sahney, Barucha, and Sarna, J. Ind. Chem. Soc., 1948, 25, 285. ${ }^{18}$ Le Fèvre and Maramba, J., 1952, 235.

Measurements.-These were made by the methods described earlier, ${ }^{7}$ when the symbols used here were defined and the extrapolation procedure was explained. The observations recorded in Table 2 are for 20° or 25°, at which the appropriate data for the two solvents involved are listed in Table 1. The calculations of $\infty\left({ }_{m} K_{2}\right)$ are in Table 3. Other necessary quantities follow as Table 4.

Polarisations and Dipole Moments.-Incidental to determination of $\infty\left({ }_{m} K_{2}\right)$ is the provision of data from which ${ }_{\infty} P_{2}$ may be calculated; by using the approximation that ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$, apparent moments for the solutes now under examination have been calculated (see Table 5).

It is seen that the moments of the bromides exceed those of the chlorides. Such is not always the case : $\mu_{\mathrm{CH}_{3} \mathrm{Cl}}$ is greater ${ }^{41}$ than $\mu_{\mathrm{CH}_{3} \mathrm{Br}}$, and the same is true of ethyl chloride and bromide. ${ }^{42}$ However, with increase in size of the alkyl radical the relation is reversed, the polarities of n-propyl and n-butyl chloride being less than those of the corresponding bromides. ${ }^{41}$

Except with cyclo-pentanone and -hexanone, carbon tetrachloride has not hitherto been used as solvent. Recorded determinations, mostly in benzene, display some variability among themselves, but, even so, change of medium does not appear to cause marked effects. Comparison with previous measurements is best made via figures for ${ }_{\infty} P_{2}$ (when these are accessible) since the μ 's quoted by other workers depend on the particular convention adopted to estimate distortion polarisations. Table 6 briefly summarises the literature. The code of the M.I.T Tables ${ }^{43}$ is used to indicate solvent and temperature ($\mathrm{B}=$ benzene, $\mathrm{CH}=$ cyclohexane, $\mathrm{CT}=$ carbon tetrachloride, $\mathrm{D}=$ dioxan, $\mathrm{Hp}=$ heptane). Polarisations (total in most cases, orientation ${ }_{o} P$ in some) are shown as c.c.; they are followed by the moment actually given in the reference cited in parentheses.

The authors gratefully acknowledge financial assistance from Imperial Chemical Industries, Australia and New Zealand, Ltd., and a gift of cyclopentane from Caltex Oil (Australia) Pty. Ltd.

University of Sydney, N.S.W., Australia.
[Received, February 20th, 1956]
${ }^{41}$ Buckingham and Le Fèvre, J., 1953, 3432.
42 Sugden and Groves, J., 1937, 158.
43 Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.

[^0]: ${ }^{1}$ Le Fèvre and Le Fèvre, Chem. and Ind., 1955, 1121.
 ${ }_{2}$ Idem, Rev. Pure Appl. Chem., 1955, 5, 261.
 ${ }^{3}$ Le Fèvre, Le Fèvre, and Rao, J., 1956, 708.
 ${ }^{4}$ Le Fèvre and Le Fèvre, Chem. and Ind., 1955, 506.
 ${ }^{5}$ Le Fèvre, Presidential Address to Section B, A.N.Z.A.A.S., Melbourne, 1955, Austr. J. Sci., 1956, 18, 39.
 ${ }_{7}$ Le Fèvre and Le Fèvre, J., 1954, 1577.
 7 Idem, J., 1953, 4041.
 ${ }^{8}$ Idem, J., 1955, 1641.

 - Idem, J., 1955, 2750.

[^1]: 10 Hazebroek and Oosterhoff, Discuss. Faraday Soc., 1951, 10, 87.
 11 Hassel, Quart. Rev., 1953, '7, 221.
 12 Vogel, (a) J., 1938, 1323 ; (b) 1948, 1809.
 ${ }^{13}$ Le Fèvre and Rao, Austral. J. Chem., 1955, 8, 39.

[^2]: 14 Bunn and Daubeny, Trans. Faraday Soc., 1954, 50, 1173.
 15 Bastiansen, Hassel, and Lund, Acta Chem. Scand., 1949, 3, 297.
 ${ }_{16}$ Tschamler and Voetter, Monatsh., 1952, 83, 302, 835, 1228.
 17 Aston, Schumann, Fink, and Doty, J. Amer. Chem. Soc., 1941, 63, 2039.
 ${ }^{18}$ Kilpatrick, Pitzer, and Spitzer, ibid., 1947, 69, 2483.
 19 Aston, Fink, and Schumann, ibid., 1943, 65, 341.
 ${ }^{20}$ Wiebenga and Krom, Rec. Trav. chim., 1946, 65, 663.
 ${ }^{21}$ Crowfoot and Dunitz, Nature, 1948, 162, 608.
 ${ }_{23}$ Carlisle and Crowfoot, Proc. Roy. Soc., 1945, A, 184, 64.
 ${ }_{23}$ Barker and Stephens, J., 1954, 4550.
 ${ }^{24}$ Miller and Inskeep, J. Chem. Phys., 1950, 18, 1519.

[^3]: 25 Allan and Sutton, Acta Cryst., 1950, 3, 46.

[^4]: ${ }^{26}$ Erlandsson, J. Chem. Phys., 1954, 22, 563.

[^5]: ${ }^{27}$ Beach, quoted as " private communication" by Aston et al., J. Amer. Chem. Soc., 1941, 63, 2030.

[^6]: ${ }^{28}$ Ackerman and Mayer, J. Chem. Phys., 1936, 4, 377.
 ${ }^{29}$ Brockway and Carpenter, J. Amer. Chem. Soc., 1936, 58, 1270.
 ${ }^{30}$ Gerding et al., Rec. Trav. chim., 1939, 58, 604, 614; 1941, 60, 258.
 ${ }^{31}$ Calderbank and Le Fèvre, J., 1949, 199.
 ${ }^{32}$ Le Fèvre, Mulley, and Smythe, J., 1950, 290.
 ${ }^{33}$ Saksena, Proc. Indian Acad. Sci., 1940, 12, A, 321.
 ${ }^{34}$ Moerman, Rec. Trav. chim., 1937, 56, 161.
 ${ }^{35}$ Moerman and Wiebenga, \ddot{Z}. Krist., 1937, 97, 323.
 ${ }^{36}$ Hassel and Viervoll, Acta Chem. Scand., 1947, 1, 149.
 87 Brockway and Sutton, J. A mer. Chem. Soc., 1935, 57, 473.

[^7]: ${ }^{30}$ Ramsay and Sutherland, Proc. Roy. Soc., 1947, A, 190, 245.
 40 Francis, J. Chem. Phys., 1951, 19, 942.

